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CHAPTER IV

DIRECTLY-TRANSMITTED GROUND PHENOMENA

ELASTIC ANALYSIS

A. INTROIUCTION

This chapter consists of the report by N. M. Newnark and Associates of the

results of a subcontract study under Contract DA-49-146-XZ-O7.3 Only minor

editorial changes have been made to fit this study into the format of the overall

final report under this contract. The report vas prepared by N. M. Newamrk and

A. Ang with the assistance of J. P. Murtha (who contributed the section on the

equation-of-state effects), A. R. Robinson (who contributed the analytical solu-

tion of the spherical problem), and S. Sutcliffe (who contributed the section on

the spherical solid vith bilinear behavior). Computer programning for these

studies vwa done by J. W. Melin, G. N. Harper, and J. Rainer.

1. Statement of Problem and Objectives

The prediction of close range ground motions and pressures resulting from

nuclear explosions involves a wide range of material properties, ranging from

that of a purely liquid state to that which is essentially of the original solid

state. The transition between these two states of the material is gradual and

probably no definable interface exists between any two intermediate states.

For purposes of studying the effects of ground shocks, the total earth motions

generated by a nuclear blast are usually divided into those that are caused by

stress vaves which are directly transmitted through the earth material from the



energy released directly Into the earth by a blast, and those that are induced

by stress waves which are initiated from the earth surface by the expeanding air

shocks.

.4Eased on a hydrodyuanic model, Erode and Bjork* have successfully performed ntumeri-

cal calculations for a simulated two megaton burst in tuff, a soft rock material.

Brode and Bjork pointed out that their calculations for the low pressure ranges,

less than 8 kilobars, are not strictly valid since in these pressure ranges, the

effects of the plastic and elastic properties of the solid material become signifi-

cant.

Using the results of Brode and Bjork in the transition pressure range, (assumed

to be at a radial distance of 660 feet from the center of a 2 megaton burst), as

a starting condition, directly induced ground motions for a half-space solid were

determined numerically on the assumption that the material beyond the region of

the crater is homogeneous, isotropic and linearly elastic. Such an assumption,

of course, is not realistic since a plastic region would precede the elastic

region; however, the use of this assumption vas dictated by available means for

obtaining approximate answers. Results of an approximate study of the effect of

the equation of state indicated that no significant error in the applied pres-

sures is involved by neglecting a plastic region between the liquid and the

elastic regions. Aside from the half-space solid, the simpler problem of an

infinite space subjected to an explosive pressure applied in a spherical cavity

was solved.

In this study, no consideration of the effects of the expanding air blast pres-

sures on the surface vas included although this can be considered without much

*Brode, H. L. and Bjork, R. L., "Cratering From A Megaton Surface Explosion",

RM-2600, The RAND Corp., June 30, 1960
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difficulty. The solution of one of the half-spaee problems involves a situation

which in essentially similar to that of the actual air blasts

The specific problems of which solutions are presented here are outlined below:

Problem I-A full-space with a spherical hole subjected to a uniformly distri-

buted pressure (see Figure 96a).

Problem 2-A half-space with a stress-free semi-spherioal cavity; loads are

applied on the horizontal surface which are exactly equal to the negative of the

tangential stresses from Problem 1, referred to as "correction" loading (as shown

in Figure 98b). Resulti from this problem are referred to in this report as

"correction" stresses, velocities, or accelerations.

I-

Problem 3-A half-spaoe with a semi-spherioal cavity subjected to a uniformly

distributed blast pressure applied directly on the boundary of the cavity (see

Figure 98c).

Problem 4-The same as Problem 3, except that the applied pressure is uniformly

distributed only over the lower half of +he semi-spherical surface of the cavity;

the pressures on the upper half of the cavity are distributed as p sin 20 (as

i. shown in Figure 98d).

2. Methods of Analysis and Results

r Problem 1 wes formulated analytically and calculations for the radial and tangential

stresses were performdd. Additional results were also obtained by an alternate analytical

I" procedure for the infinite space subjected to an exponentially decaying pressure-

time curve (see Appendix I). Solutions for stresses in Problem 1 obtained with

I.-



the use of a spherically ymmetric discrete model were in very• •od agreement with

the co~rrsponding anlyrtical solutions.

Results for the half-space solids, Problems 2, 3 and 4, were obtained exclusively

by the technique of digital simulation. Although no analytical solutions are avail-

able for direct verification of these results, there are a number of limiting con-

ditions which all the solutions satisfied, thus indicating the correctness of the

solutions. Furthermore, the mathematical consistencies of the models provide a

basis for ascertaining the correctness of the solutions if the numerical results are j
reasonable from an intuitive standpoint.

All calculations were performed on large high-speed digital computers. In addition,

whenever the discrete models are involved, the problems were simulated directly on

the computers.

All results are presented graphically. For the full-space solid, time functions of

the radial and tangential stresses, and of the particle displacements, velocities,

and accelerations at points of varying radial distances from the burst are given.

Analytically determined solutions are given only for the radial and tangential stresses.

For the half-space solids, the radial and tangential stresses, and the radial particle

motions are plotted against time. These were presented for points along lines with

different angular positions from the horizontal. The solutions for the half-spaces

include other stresses (shear and circumferential) and the tangential accelerations,

velocities, and displacements; however, these are not presented here.

3. Starting Conditions

The original data from the calculations of Brode and Bjork, previously mentioned,

were presented in the form of contours connecting points of equal pressure,

-4-



velocity or density at specified times. From these contours, pressure-time

relationships were reproduced and presented in a form that is more meaningful

for further study and analysis. These pressure-time relationships at radial

distances of 330, 495, and 660 feet from the point of burst, are presented in

Figures 99 through 101. Corresponding relationships for the particle velocities

were also reproduced but are not presented here.

The problem considered in this study involve a full space with a spherical hole,

or a half-space with a semi-spherical cavity on the surface. The radius of the

cavity in all cases is 660 feet from the center of a two-megaton burst.

The pressure-time relationship of the applied pressure is shown in Figure 102,

which represent the pressure-time curve from the calculations of Brode and Bjork

at 660 feet directly below the burst. The decay portion of *.is curve is extra-

polated by inference from available measured data. In the solutions by digital

sinmlation, this pressure is actually applied at a radial distance of 645 feet

from the point of burst, and not at 660 feet, for convenience in treatment of the

lumped-mass model. There is therefore a slight discrepancy between the analytical

and the lumped-mess solutions; this is not of significance in the results.

The velocities at the surface of the cavity, which were also calculated by Brode

f• and Bjork, were not considered in this study,

B. EFFECTS OF THE EQUATION OF STATE

In the present study of the stress field outside the crater region, the pressure-

time relations at some radius as obtained from the hydrodynamic model of Brode and

Bjork are used as the boundary stresses applied to an elastic solid. Theor-

etically, the pressures derived from the hydrodynamic model results should be

adjusted in order to provide a consistent boundary condition. The need for this

-5-I.,



!II
adjustment results from two faotors: namely, (1) the wave propagation velocity

in the elastic solid vill be less than that in the fluid model, and (2) the par--

tisle velocity at the boundary between the fluid and solid regions should be the

"saw in both media. That these two conditions are not automatically satisfied

is the result of omitting the plastic or transition region which in the real

situation, separates the hydrodynamic and elastic regions. It is apparent that

any procedure adopted to adjust these pressures can only be an approximation.

In the subsequent discussion it is shown that the necessary adjustment appears

to be small and may be neglected without serious error.

If the mathematical model is assumed to consist of compressible fluid and elastic

solid regions, a wave propagating through the fluid could be partially reflected

at the boundary separating the two regions. The relations which must be satis-

fied by the incident fluid pressure and particle velocity, p and 'f, and the

transmitted stress and particle velocity, a and A, are as follows:

p + Ap = a (la)

'a -A f ? (lb)

where Ap and Afa are changes in the fluid quantities resulting from the reflec-

tion. The relationships between stress and particle velocity in both the

incident fluid and solid waves are time dependent; however, at the front of an
4.y

ideal wave the following relations exist

a (2a)

•'•-e~c•(2b)
Pf -

* Force equal change in momentum per unit time.
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ere P and a are aensity and wave velocity, respectively, and the subscripts

) refer to the solid, b and fluid, f, Although the fluid pressure pulse shapes

caloulated by Brode and Bjork are not truly ideal, Equation (2b) is approximately

correct for the initial part of the pulse. The application of Equation (2b) im-

plies a value of the parameter p/6f vhioh is not time dependent for a given

radius. The following tble sumarizeo the values of this parameter for the

pressure-bime and velooity-time pulses in the fluid at a range of 200 meters:

,msee kilobers (kilobar-see)/kilmester

58 3.4 45.4

65 5.0 48.6

74 4.5 45.0

82 3.0 32.0

85 2.4 31.5

These data indicate tbh•at the assumption of a constant value for p/ftf is reason-

able, at least for -he principal part of the pressure pulse.

If it is assumed tbht a relation similar to Equation (2b) is valid for the

reflected pressure and velocity, i.e.,

fir=pr (3)
- eff

the relation between the incident and transmitted stresses is as follows:

cy 2p• (4)
fe o+f

here •- O(-)° -7-5
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In Equation (4) o represents the transmitted stress that is developed when a plane

wave impinges on the boundary between two different media. AA such, it would be

correct at least at the shook front. I

Since Equation (4) represents an acoustic reflection, it in desirable to calculate

the reflection factor for plane, finite amplitude waves, in the fluid reflecting from

a rigid wall. The equation of state used by Brode and Bjork for tuff is

p = (0.425E + 0,113n3/2E) + 5.30n (E )l/2 1010
10

0.707n (E- 10
71-0)10+ 10(5)

105 + (E/10 10

where p = pressure in dynes/cm2

E = specific internal epergy in ergs/gm
P

n= : Po = initial density = 1.7 gm/cc

For pressures less than 10 kilobars and n less than about 1.5, Equation (5) my be

approximated as

p = 5.3 x 1010n( )1/2 (6)

10 1

Combining Equation (6) with the Hugoniot energy equation,

A= (p - p~)(__~
2 -Po P (7)

results in the following pressure-density relation:

p= 825 x010 P)2 dyne

[PO2 PO cm

for the ambient pressure, p 0  equal to zero. As a check on Equation (8), we my

calculate the wave velocity, co, for waves of small amplitude;

-8-
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-C =c 7.200 ft/sec
d"

S1' ofTe usually quoted for tuff rne

for very small values of vaue of rg

from about 6,000 - 8,000 ft/sec.

When a finite amplitude wave undergoes normal reflection from a rigid boundary,

the ratio of the excess pressures behind the reflected and incident waves is given

by Cole* as follows

- 1= + (9)

p PO/{L1 
4 }

vhere(1 is the density behind the reflected shock front.

The ratio of reflected to incident pressures, pr/p my be calculated using

Equations (8) and (9). For an incident pressure, p = 9 kilobars, pr/p = 2.2.

For the same incident pressure in water, pr/p = 2.9. Thus the reflection factors

for finite amplitude waves in the range of interest do not appear to greatly exceed

the acoustic reflection factor, vhich is 2.0.

Approximate values for the wave velocity in the fluid can be derived in several

ways, each of which yields about the same result. Using ideal shock relations

and the calculated maximum values of p and Ur from Brode and Bjork the folloving

results are obtained:

Range f -P

Meters /0

ft/sec

150 8,650

200 8,100

250 8,030

*Cole, R.H., "Underwater Explosions", Princeton University Press, Princeton,

New Jersey, 1948.

S[ -9-



Thus at a range of 200 meters the appropriate value of 8 = 8,100/7,200 = 1.12

and from Equation (4) a = 0.945 p. This reduction in the fluid pressure isI

sufficiently mall that it may be negleoted. Thus the applied stress for the

elastic so"lid may be tken as the fluid pressure at the radius of the boundary. 1
The applicability of the results of Brode and Bjork as boundary conditions for

subsequent calculations in media other than tuff depends upon several factors

including the effect of differences in the equation of state between any other

material and that assumed for tuff. Of particular importanoe is the effect of 1
the equation of state on the pressure-time variation from point to point.

Unfortunately, no calculations are available for any other rook or soil material. A

qualitstive estimate of the effect of material properties can be made by comparing

the peak overpressure-distance relation for water and a gas with the results for

tuff.

The variation of peak pressure with vertical distance below ground zero is given

for tuff in Figure 103 along with similar results for water and an ideal gas with

K= 3. The RAND Corporation calculations for tuff were terminated at a peak

pressure of about 5 kilobars. At these lower pressures, the peak pressure varies

approximately as the inverse three-halves power of radial distance, while at

higher pressures, not shown in the figure, the peak pressure variation is

approximately like the inverse cube of the distance. The dashed lines in the

figure are extrapolations of available data.

The ideal gas solution was also obtained by Brode and Bjork using the hydrodynamic

model. Here the peak pressure varies as approximately the inverse cube of the

distance for all the ranges calculated. A comparison of the tuff and ideal gas

-10-
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calculations indicates that for a given range the peak pressures between the two

materials differ by lses than a factor of about three.

The relationship for water shown in Figure 103 was derived from the peak water

overpresuure-distance dat4 for a deep underwater explosion*. In deriving the

relation for water it vas assumed that the weapon yield vas 1200 IC or twice

the total energy assigned to the rock half-epace at time zero by Brode and Bjork.

The peak water pressure varies approximately aa the inverse of the distance for

pressures of about 0.1 kilobar. As in the previous casep less than a factor of

three separates the curves for the tuff and water for peak pressures ranging from

about 0.1 to 10 kilobars.

On the basis of these comparisons it seems reasonable to expect that differences

in the equation of state for various rocks and soils would not cause differences in

the peak pressures found using the hydrodynamic model of more than an order of

magnitude and perhaps much less. This observation, along with the preceding

discussion of the boundary conditions for the elastic model suggest an approximate

method of extending the RAND Corporation calculations to materials other than

tuff. Since the peak pressure-distance data do not appear to be too sensitive to

significant variations in the equation of state, it may be assumed that the tuff

results of Brode and Bjork are applicable to other types of rock and perhaps soil

materials, Equation (4) may be used to adjust the pressure input for the elastic

I bbody to compensate for the differences in density and wave velocity between tuff

and a given material. It should be emphasized that this procedure is recomnended here

"because no close-in calculations are available for materials other than tuff. When

such calculations have been made, another procedure should be devised.

*Glasstone, Samuel, The Effects of Nuclear Wei,pons, U. S. Atomic Energy
Commission, Aprilt 1962
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In all of the problems, the material of the solid is assumed to be linearly

elastic. Values of the elastic constants of the solid are assumed to be approxi-

mately those of materials similar to tuff, a material in which the calculations I
of Brode and Bjork apply. These values were determined or inferred from avail-

able field data, and are as follows: I

Lae's constants: = 3.9 x 105 psi

L=3.5 x 10 5Pi

Dilatational wave velocity, c = 6,000 fps. I
These values correspond to a Young's modulus of 8.8 x 105 psi and Poisson's

ratio of v = 0.265.

C. THEORETICAL SOLUTION FOR INFINITE SPACE

Consider an infinite homogeneous, isotropic elastic space with a spherical cavity

of radius a. Let the cavity be loaded by a normal stress 0 rT (00 0, t), where

O and 0 are angles locating a point .n the surface of the sphere. The stresses

will usually be compressivr; however, the ordinary sign convention of the theory

of elasticity, teasile stresses positive, will be used for convenience. In what

follows, no distinction is made between the initial and final configurations of

the mediumt so that the ordinary theory of elasticity applies. o

For a radially symmetric loadt it is apparent that the only displacement is the

radial displacement u. There are only three non-zero stress components, arr'

Sa G a c0. For small displacements the acceleration in the radial direction

is a =u, thestrain u = r -C = R-. The equationofmotion in
rr~r 00 r

the radial direction is

-12-



1_• (r2ar • p
r2 r r "=

orr
S 2a - -o (o

or ~ ~ r4
2Or g (10)

rr "r

Expressing the stresses in terms of the strains, we have

= A

qgo= a0 o= AA+2y -u

If The equation of motion, Equation (10), becomes

orr
or

(2u 2u u 2u P 1-(

NoV we introduce the displacement potential 0 such that u - The left side of
r

Equation (11) becomes

3r3 +r 6r 2 r 2 F r r r r)

The right side is just

so that the equation of motion is satisfied if

420 (12)
cp

The general solution of this partial differential equation may be obtained by

noting that if we set 0 = r '

r

-13-
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62 2p. +
rr2-r rr2" r r- 2r

The left side of Equation (12),ia than equal to r2 that te oalar vave Eq. 12

r r

The general solution of which for outgoing disturbnces in

S= •r -C H.er.e, op ;k +2p) 1/2
p p P

is the P-wave velocity. The displacement potential is now of the form

0=- F(r - ct)

Straight-forward computation yields the following quantities:

u = P I F'(r - c t) - L F(r - c t)
ýr r p r2p

-6U=-F'' -2-F' + 2F

r r
er = r -r 2 3

a + 2ji F"' (r - cpt) - ý!-F I(r - clt) + AE• F(r- cp•
0rr r r'2 p p

L F I-F - ýAF1 + 4UF(10= 0 =r r 2 r3"r r

The maximum stress difference is

a - a•o =2 (-F'' -- F' +-F)
rr r 2 3

It can be seen that knowledge of stress at the boundary r = a gives us a differen-

tial equation of the form

where f is a known function and A, B, C are positive constants. From the form of the

argument F = r - c pt, it follows that becomes smaller as t increases, r remain-

ing constant. When the disturbance starting at r = a at time zero reaches the point

r, we have r - c t = a. For values of • • a the function F and all its derivatives

-14-



vanish. We my have a stress discontinuity when the disturbance begins, but no

displacement discontinuity. Suitable initial conditions for the problem are

P'(a) = P(s) = 0

The apparent negative damping indicated by the negative coefficient of the P' term

in the differential equation for F is explainable if one remembers that g will be-

come smaller as t increases. In time, the solution damps out for a limited distur-

bance, as it should.

If we no longer restrict the pressures on the spherical cavity to be radially sym-

metric, the problem becomes somewhat more complicated. It is possible, however,

to solve this dynamic elasticity problem in such a manner that, as before, only

the solution of ordinary differential equations is required in the numerical evalua-

tion. This procedure avoids the difficult and tedious computation of values of a

Fourier integral, the unfortunate feature of the classical approach. Of course,

in the problem as given the stresses on the "top half" of the spherical cavity are

at our disposal. If we choose the stresses to be antisymmetric with respect to the

surface (the plane z = 0), this plane will be loaded by only shearing tractions.

If, on the other hand, we choose a synmetric distribution, the plane is loaded by

only normal tractions. In either case, these loads must be removed by other

methods.

The derivation will be given in general terms and then specialized for two cases.

The first of these will be the radially Symmetric case already treated; the second

will be the lowest mode of the antisymmetric case. In what follows, Cartesian

Tensor notation will be used throughout the computations. A sum over n will be

-15-
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meant only if the sum sip occurs explicitly.

If ui is the displacement vector, the Navier equations of elasticity read

(A))TT p~x -r X T21

6•u.
where A, the dilatation is n . We first express the displacement vector as the

sum of two vectors, the first corresponding to no rotation, the second to no dila-

Son. ui = Xi + ijk a x

where Cijk is the alternator. Substituting into the equations of motion, we have

4ijkkT7ax 
t

[A+~j * (~72+ 6, ( (70 2 C k ~( 2 4d
ijk 4 - t 2

These three equations are satisfied if ( + 2,u IV2 e0 amd 'VV 2oik = P
The 1/2 = Cr and =u c, are the propagation velocities of

P and S waves, respectively. We see that the problem has been reduced to solving a

scalar and a vector wave equation.

Consider first the scalar wvave equation. A convenient wvay of solving this equation

in a form suitable for use when spherical boundaries are involved is to note that

the relevant solutions of the "homogeneous" equation V2 = 0 is K = in, nhere in

is a solid spherical harmonic of order n. Three properties of the solid spherical

harmonics will be used. The third one will not be needed until almost the end of

the computations.

-16-



1. =7 0 0 or = 0

2. K1 in homogeneous of order n in xl, x2 , and x3 so that by Euler's theorem on

homogeneous function-slxi • = nKe.
€ i

3. The KI are orthogonal over the unit sphere. Over a sphere of radius a we have

f n I'"ds=0, men

dKn s 4%-a 2n + 2 m=n

We now use the idea of variation of parameters and seek a solution of the equation

2 1

c2p
2

in the form f (r, t) Kn, where r = x x. We shall find the restrictions on the

functions f by substituting this solution into the vave equation for $. For this

purpose we require and 62

*X. ýx a

ý 2 _ 2f __Xi M iK i n u2rK

20 62 Xi X. 6.. 6f 6 f Xx.X

ax a 22 r r r -r n-2

+ 2 "a -- ý' + fn 2e •X

where 68. is the Kroneoker Delta, zero if i j j, 1 if i = j (8iS = 3). Using the

properties of the Kn, we have

h -17-
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L K rI 2r [rIJ "

The wave equation now becomes

n2fn +2(l+ n) t n I
2pr J 2 2

and is satisfied provided that
62f:n 2 12_n h

- + (13)
6r 2  r ýr -cP26t

Equation (13) is a linear hyperbolic partial differential equation in the two variables

r and t of a form whose general solution is known. For n = 0 we find

)2fo0 2 6fo0 1 ýf o7-
r2 +r 1r = 2 2

P

the solution of which is 1
i F(r - c t) + _1 Fl(r +c t).

o r p r1

We shall only retain the first term, which represents an outward moving disturbance.

It may be verified that if fn is a solution of Equation (13),then i -h (fn) is a

solution of Equation (13) for n replaced by n + 1. It follows that the part of the

general solution of Equation (13) we are seeking is

fn (r, t) n (--) Fr - ct) (14)

We now turn to an examination of the vector wave equation V24k= CS. 4Uk, As

before, we first consider solutions of the equation 2k = 0 and then multiply

by gn(r, t). The choice of solution is governed by the condition that, for a

loading of the sphere synmnetric about the x3 axis, the displacements lie in the "

-18-
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planes of the meridians. As will be seen later, a convenient form of the solution

in the one shown below:

gn ijk Xi -Fx-

SI

where Ku is a solid spherical harmonic of order n, We prove first that

1.2 6 eV k( ik xi -) 0.

azid~1W ý2 n_ _ _ _ _ _

Tht is x•j Tx - V ik(i + xi K )

rthermei is easy to see ta eijk xi homogeneous of degre n i xl'

22 and It follow imediately that gn satisfy equations similar to Equation (13).

XL 2(ar+ n) g 2 (15)

As before, the solution of interest is

g,, (r, t) = (L) 1--- n •r rl (r -- $• (16)

For an axially synetric problem,e this in forothe vector potential. We

.my now compute the displacement vector u• = + ij -• " Comrputations will

be carried out for a single n. For the final solution, of course, a su a on n will

be required. The only part of the computation that is not self explanatory is the

use of the identity

(r Jk, +)k = ( rim 8jp - 6 ip (1m6

This last relation together with the first two properties of the K1' given above

leads to

-19-
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iI

(n +L e+f -(n +1) gn- r~] 7K

The (mathematical)strain components may now be calculated:

i U , ui + u. ýui
+7 1 Žj =axi

+ -(n + i j) 3. -r x i- +

iŽf2 8. 1

•_ n •_

•r2 rx. r bx

' fn -(n + 2) 'n-r 2 gn

The stress complonents're foind from the stains by applying Hooke's Law for an 2

isotropic solid:i

We are especially interested in the tractions on the surface r = a. The unit

+ =a

r 2fn7

T. = 0. .n.- = -n4' 
-n/•ul

aj A~ 6 r + 2

,p E r

r =
(1+[ (n+-) gn rgj (n ' ) __

2 n r -20x
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We mee that the traotion is in tip form

I. (17)

Here pri.mes denote differentiation with respect to re

The known traction on the boundary is a. normal pressure a1rr (0, t)j in the

rr=&

axially synmetric case. It is convenient to expead the stress in "Epherical harmnonics.

(In what follows, the solid harmonics wiii correspond to surface harmonics of sonal

type only by virtue of the axial synmetry). The expansion reeds

ar (a,0•, )=:Z a(t)Kn on r =a.

rr nn
i Multiply both sides by K"' and integrate over the sphere of radius a,

fa rr(a , 0 , )Kinds =Zan(t)j 1K nK"ds,

a a
By the orNho lolity properties of the Kn we have

2m+l n Knm
4N)= 2+22 =r rr

From Equation (17) we have

(N I K+I ".) -T : •rrr (r-')= an(%' (18)

2 n n

That the vector equation should yield solutions for e and 2 'my be seen by noting

that. -j is a radial vector and - lies in the meridional plane if Kn corresponds

r n

i -21-
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I
to zonal harmonics. We are then dealing with just two components at each point so

that two functions should be determined. We expect that N2 = 0 since it multiplies 1
the only vector in the equation not in the radial direction. Formal computation

gives us this result and assures us that the modes decouple.I I
X. -

Let us multiply Equation (18) by -2 Kin, sum and integrate over the sphere of radius

•i 2 r
a:1

nr n

--ja tf x 1
-'x. .ds

n a

or N• (4• 1 ) + N 2 m•la + 1 = %a(t) (•-;-i-)a~ (19)

We also multiply Equation (18) thr~ough by • , sum and integrate over the unit

sphere. For this purpose we shall require "the surface integral,

a f

We note first that this surface integral is simply related t o the integ ul of the

same product over the solid sphere by virtue of the homogeneity of the functions

af K r n+m-2 r2r 2 ? 3 Ku aI

a ax K a am

a

However, the volume integral can be evaluated by the divergence theorem:
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f f

It ,-

VV

f (e-)) dY e 6eId

(II) m ( *).

1. =f mKeeas

w e see then thatdo 4 = p O n m

For n= O w, hamK00,1 an

Using this result, we find

1 (4%2 - 2 2•l 2 m 2=+(

Equations (19) and (19s may be solved simultaneously to give

N m  0 Nml -a(t)

2 N= m

These resultabtogether 'with Equation (17),pro'vide usn with two coupled ordinary dif-

ferential equwtions. if we recall the forms of the solutions for f and g, Equations

(14) and (16).

For ai = 0, we have K0 1 and

0o2 =t2 - = )

01p p 0

0Pr p

-23-
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a2 fo0 2 F/ 1 F
r2 2 3

This give, us precisely the same Orr we derived before.

For n = 1, the lowest antisymmetric mode, we have KI = x3 (or z). It will be

remembered that z = 0 is the plane boundary. We have that
ir/2

f ar(0,t) K'ds = 41m 3 f ,($, t) sin 0 cog 0 do
at /2 0

a (t 2- a (Oýt)sin 0 cos 0 dO

fo

The solutions for f and g are

f = r -L rL F(r - c t
r 6r Ir p° F1
i b r (r - cst .

The differential equations expressing the boundary condition read

a + 2Fu,,,It/ . +6 " + 1-u-F' -.12 ,FG + '_ G1 _ G

rr r 2 3 4 2 3 4r r r r r r

= + a1r at r= a

2 , 6 6 1 3" 6 6-- F + -F F+ - + -G G= Oat r =a.

r r r r r r

Stresses my be expressed in terms of the strains. The most interesting stress

components are the shear on z = 0, vhich must be later removedand the stress

033 or a directly beneath the center of the sphere.

'3 1 j oy o zr 2  r3  4  r r 2
s1 s= O, y = 0 Cr r r r r+rG•

u- G1 +r G ; (r = x)-3 
r4
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'33 rr r 2 3 -4 2
x = ,=0 r rr r

+ 1& G' - 1 4-,G (r=z)
r 3  r

It is not difficult to see how the ideas of the above derivation my be extended to

the case of spherical layering. In all but the outer layer, we should have to

allow incoming as well as outgoing wves, that is, solutions of the form

(r r F(r + at). If there are a layers, we have s - 1 interfaces whlere two

traction components and two displacement components must match (except when n = 0).

At the inner surface, we have two equations, as in the present problem. The total

number of (scalar) boundary conditions is then 4s - 2. Counting both incoming and

outgoing waves we have four F's and G's in each layer but the outer, and two in

the outer. The method will then give 4s - 2 equations in 4s - 2 unknowns. It should

be noted that these are coupled ordinary differential equations with given initial

values, a type of problem well suited for solution on a digital computer.

The solution to Equation (15) for a radially symmetric load was programmed for the

IBM 7090 computer using numerical integration of the displacement potential. Radial

and tangential stresses were obtained for two media. The first has A = 390 ksi,

= 360 ksi and a density such that the p - wave velocity, cp, •as 6,000 fps. The

corresponding Poisson's ratio is 0.260. The second problem has ý = 590 ksi,

S= 260 ksi and the same density, so that the p-vave velocity remains equal to

6,000 fps but v = 0.347.

The radial stress at various depths proved to be independent of Poisson's ratio and

thus the radial stresses for both problems are shown in Figure 104. The maximum
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tangential stresses are nearly proportional to * These are shown for various

deps in Figure 105 and 106 for both problems.

D. SOLUTIONS BY DIGITAL SIMULATION

Two di.crete models of the lumped mass-spring type were used in the present study.

The model used for the solution of Problem 1 is a spherical model, whereas that

used in solving Problems 2, 3, and 4 is axially symmetric. The equations of motion

of the discrete systems are identically the same as the differential equations of

the corresponding solid continua. This is demonstrated in the following discussion

for the spherical model. A similar demonstration can be made for the axially sym-

metric use.

In Figure 107 is shown a typical arrangement of the mass points (0, 1, 2, ... ) and

the stress points (a, b, c, ... ) of the spherical model along the radial lines.

The masses of the solid are concentrated at the mass points, while the springs pro-

vide the average resistances of the solid. The stresses in the springs are average

stresses defined at the A~ress points.

Applying Newton's second law of motion to a typical mass point "0" the equation of

motion of such a mass point in terms of stresses can be derived as follows:

,Y a r2 9 2 4.c(1 Ir2)
a (ra 2 ) ( a) rb (rb 2 ) (72 - ec 4r o

t (ro0Ae)2 to U

where: a = average radial stress at stress point "a".
r

a = average tangential stress at stress point "c".

-26-



re = radial distance of stress point "a" from the center.

e = mass density

U0 = radial acceleration of mass point "0"

S= grid distance, see Figure 107.

A• = incremental angle, see Figure 107.

ra = (r + ) ; rb = (r0-1)

Simplifying, the above equation becomes,

a - 2(ao o
r r r 0 u

which is identically the same as the central finite difference analog of the dif-

ferential equation,

ar 2(a - a) 2 Sr 
r

This last equation can be recognized to be the differential equation of motion of

a spherically symmetric solid.

Problem 1 - Infinite Space

This problem involves an infinite solid space with a spherical hole having a radius

of 660 feet and subjected to a uniform blast pressure on the boundary of the hole.

Results of the numerical calculations with the spherical model are presented

graphically in Figures 108 through 113. Figure 111 shows the pressure-time relation-

ship of the radial stresses for points along a radius, while in Figure 112 are shown

the same stresses plotted against the radial distance for the specific times in-

dicated. Similar pressure-time plots for the tangential stresses and the particle

accelerations, velocities, and displacements are presented in Figures 108, 109, 110,

and 113.
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Problem 2 - Half-Space with "Correction" Loading

In Figure 98b is shown a meridional section of a h&lf-sgpce which is subjected to

"a "correction" loading at a specified time, t 1 " This correction loading in exactly

equal to the negative of the tangential stresses (see Figure 113). The hemispherical

cavity is free of stress in this case.

The stresses and particle motions derived from this problem when superposed with

the corresponding stresses and particle motions of Problem 1 represent the solution

of the half-space subjected only to a uniformly distributed pressure applied at

the boundary of the semi-spherical cavity.

Graphical results representing time variation of stresses and particle velocities

are given in Figures 114 through 120. Numerical results for points along the sur-

face and those along lines inclined at 15 degrees and 30 degrees from the horisontal

are presented. Beyond the 30 degree line, the results are relatively small and are

not presented.

The results from this problem are referred to as "correction" stresses, velocities,

or accelerations.

Problem 3 - Half-Space with Uniform Loading

This problem involves a half-space with a semi-spherical cavity with a radius of

660 feet as shown in Figure 98c. A uniformly distributed pressure having a pres-

sure-time relationship as that given in Figure 102 is applied on the entire boun-

dary surface of the semi-spherical cavity.
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Plots of the radial parUticle accelerations and velocities, and the radial and tn-

gential stresses as a function of time are given in Figures 121 through 130, The

results for points along lines having different angles of inclination, 0, with the

horizontal surface are given; specifically, the results for lines with 0 = 0,

15, and 30 degrees and for points along the vertical line (0 = 90 degrees) are pre-

sented. The results for the points along lines with other angles of inclination

(0 > 30 degrees) were not presented since they are almost identical with those of

the corresponding points along the vertical line. The results along the vertical

lines are also identical with the results for the full-space. This, therefore,

means that the full horizontal surface does not significantly affect the results

for regions in the neighborhood of the vertical axis.

The results of this problem should be identical with the combined anwers of Pro-

blems 1 and 2. A close examination of Figures 108 through 130 will reveal that

this is indeed the case with the solutions presented here.

Problem 4 - Half-Space with Non-uniform Loadinr

A meridional section of the half-space of this problem is shown in Figure 98d.

The problem is geometrically the same as in Problem 3 except that the distribution

of the applied pressure is uniform only on the lower half of the sB*erical surface,

while on the upper half, the pressure distribution varies as p0 sin 0 for 0 4 0 4 45

degrees. Such a pressure distribution closely resembles the corresponding results

of Brode and Bjork.

-29-V.
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Results presented are for radial and tangential stresses, and for particle displace-

ments, velocities and accelerations as shown in Figures 134 through 153. Other

stresses and particle motions were computed but are not presented here. The re-

sults are plotted as functions of time for points of increasing radial distances

along lines with four different angles of inclination from the horizontal.

The results along the lines with 0 = 45 degrees and 0 = 90 degrees are very close

to each other. From this, it follows that the results in the region between the

45 degree line and the vertical should be almost identical with the corresponding

results on the vertical line. It should be pointed out that the results on the

vertical line are also identical with those of the full-space, thus indicating

that the horizontal boundary of the half-space has negligible influence on the

ground motions and pressures in the region close to the vertical.

E. SIGNIFICANCE OF RESULTS MJD CONCLUSIONS

1. Discussion of Results

The neglect of a plastic region between the hydrodynamic model and the linearly

elastic solid has an insignificant effect on the pressure-time relationship assumed

in this study. However, since the study was predicated on the assumption of an

elastic solid, and because of the extremely high stresses experienced by the solid,

which would invariably cause plastic flow in the regions under consideration, the

results can not be strictly applicable to materials which are inherently non-

linear or which exhibit elastic properties only at low pressures. The calculated

ground motions and stresses, therefore, must be considered in this light in relation

to actual earth materials.
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Comparing the results of the full-space with the corresponding results of the half-

space solutions indicates that the horizontal surface boundary has negligible effect

on the conditions in the lover regions of the half-space. This is clearly supported

by the almost identical results for points on a diagonal line with those on the

vertical line, and also by the closeness of all of these relationships with those

of the full space. This fact is also verified by the results of the "correction"

solutions which show that the "correction" stresses and velocities decay rapidly

as a function of depth. In the regions close to the horizontal boundary, the tan-

gential stresses are significantly affected by the boundary; the peak tangential

stresses is increased as can be seen from Figure 127 through 130, with its mmxi-

mum value somewhere along the line with a 15 degree angle of inclination from the

surface. A surface effect gave rise to the tangential stresses in the vicinity of

the surface, as shown in Figure 127. The radial stresses, on the other hand, are

affected to a much lesser degree by the surface boundary; the magnitude of the

radial stresses influenced by the boundary are shown in Figure 116 and 117.

Since an expanding air blast over the surface will induce normal pressures, which

are essentially similar to the "correction" loading used in Problem 2 although

the air blast will have a different pressure-time relation and higher peak values

than those of the correction loading, the effects of an air blast can be expected

also to be similar to the effects of the correction loading and would be pronounced

only in the regions between the surface and the diagonal. In the lower regions

of a half-space, the directly.transmitted effects will predominate.

-31-
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In all cases, the radial velocity-time curves are similar to thi corresponding radii.

stress-time curves; however, these two functions are not simply related as in the I
simple one-dimensional case. Both the peak values as well as the rise times of I
the radial stresses, velocities, and accelerations decay with increasing radial

distance. The peak values of the tangential stresses also decreases as a function

of the radial distance, in addition to its relations with the angle of inclination

with the horizontal surface.

"-I

2. Decay of Peak Radial Pressures. Velocities. and Accelerations

The rate of decay of the maximum radial pressures at increasing radial distances

are su3marized in Figure 133 and 156. These show that along the vertical axis of

the half-spaces, the radial pressures decay as the inverse power of about 1.15 of ti

radial distance, which is precisely at the same rate of decay as the radial stresses

in the full-space. At the surface, the radial pressures decay more rapidly and is

approximately with an inverse power of 1.40 of the radial distance.

The decay of the peak radial velocities as a function of the radial distance fol-

lows the same trend as the radial stresses along lines of the same angles of in-

clination with the horizontal surface. These are demonstrated in Figures 132 and

155. Significantly, these also show that along the vertical axis of the half-

space, the peak velocities decay with the same inverse power of 1.15 as the de-

cay of the peak velocities in the full-space solid.

The maximum accelerations decrease with varying inverse powers of the distance,

approaching inverse powers of 1.80 at the surface and 1.50 along the vertical axis
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at greater radial distances. At closer distances, the decay tends to be less

rapid, as shown in Figures 131 and 154.

It must be pointed out that the rate of decay of the peak values of the stresses,

velocities, and accelerations for regions between the vertical axis and the dia-

gonal is about the same as the rate of decay &long the vertical axis.

These decay rates are for the elastic condition assumed in the analysis, and may

be slower than actual decay rates in real earth materials.

3. Specific Conclusions

The following specific conclusions may be derived from the numerical results pre-

sented here:

(1). The region below the diagonal line for the half-space remains essentially

the same as a full-space; that is, the horisontal surface boundary has

practically no effect on the conditions within this region.

(2). Primary effects of the horizontal boundary are limited to the region

above the diagonal line. These effects are most pronounced on the sur-

face and decrease very rapidly at greater depths. Tangential stresses

in the shallower region are significantly affected by the boundary,

while the radial stresses are affected to a lesser extent.

(3). The effects at normal air blast pressures can be expected also to be

limited to the regions above the diagonal.

(4). The decay of the radial pressures with increasing radial distance is

less rapid for an elastic solid when compared with the decay in the
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hydrodynamic model of Brode and Bjork. Inverse powers of 1.40 to 1.15

of the radial distance (depending on the depth) were determined in the

present study as conpared with inverse powers of 3 to 1.50 for the hy-

drodynamic case.

(5). Maximum tangential stresses decrease faster with depth from the horizontal

surface than with the radial distance.

(6). The rates of decay of the radial velocities are the same as the decay

of the radial pressures. Radial velocity-time curves are similar to the

pressure-time curves; however, there is no simple relationship between

the velocities and pressures.

(7). The peak values of the radial accelerations tend to decay more rapidly

at greater distances, with inverse powers approaching 1.80 of the radial

distance at the surface and 1.50 along the vertical axis.

(8). Rise times of the radial pressure pulse decays with increasing radial

distance; however, no evaluation of this decay has yet been made in this

study.

F. SPECIAL CASES

1. Non-Homogeneity and Stratifications

Certain problems involving solid spaces with a number of layers, each possessing

different elastic constants can be treated with the technique of digital simulation

used in the present study with slight modifications of the present computer pro-

gram. The layering~however, must be restricted by the following geometric consi-

derations:
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(1), For spherically symetric problems (involving infinite spacqgefor example)

the layering must maintain the condition of spherical symnetryl this

means that the different layers must be spherically concentric.

(2). For axially-symetric problems (involving half-spaoes), the layering

can be of two configurations:

(a) If the loads are applied on a semi-spherical cavity, the layers

must also be concentric semi-spheres of given radial thicknesses.

(b) If the loads are applied on the horizontal surface, the layers can

be horizontal or spherical.

In addition, the analysis must be based on the assumption that there are not relative

motions at the interface of any two adjacent layers.

2. Stherical Problems in Bilinear Solids

At present the literature contains a number of solutions to the-problems of plane

wave propagation in bilinear media (e.g., Rakhmatulin, K. A., "On the Propagation

of Plane Waves in an Elastic Medium with a Nonlinear Stress-Strain Law", Uchenye

Zapiski, University of Moscow, Vypusk 152, 1951, pp. 47-55; Akaiak, R., and

Weidlinger, P., "Attenuation of Stress Waves in Bilinear Materials", Journal of

Engineering Mechanics Division, ASCE V. 87, No. EM3, June 1961; Sutcliffe, S.,

"Strong Shock Formation in Bilinear Media", to be published in the forthcoming

issue of EMD, ASCE).

The study of the same problems in the radially symmetric system is not nearly

as complete but can be carried out by similar analyses (e.g., Rakhmatulin, K. A.,

and Demianov, Yu. A., "Prochnost' pri intensivnykh nagrvszskh", Fizmatgis, Moscow

L. -35-
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I
1961). The dded complexity of the nonlinearity of the differential equations in the

radially symmetric case makes the subject somewhat more difficult, and generally I
makes approximate analytical techniques necessary.

The differential equation of motion for dilatational waves in a radially symuetric

system with linear stress-strain relation is given by

r2 + -r r o(20)

where u is the diaplacement in the r - direction, r and t are space and time coordin-

ates, and c = ' + ! is the acoustic velocity.

The characteristics of Equation (20) are

r + ct = R (21&)

dp ± + 2 (p -_) dr = 0 (21b)
c r r

The principal difficulty encountered in the analysis by characteristics lies in

the fact that Equation (21b) is not integrable in a simple form unless the potential

0, with u = 3r1 is introduced. Thus, as will be done in this treatment, it is n

sometimes more convenient to use the general solution to Equation (20) and a poly-

nomial representation.

Let the stress-strain relation for a radially symnetric system be given as in Figure

157& where loading takes place along the line with slope c' and unloading along

the line with slope c. Let the radial stress at r = r be given by a function of ti,o

type shown in Figure 15Th. In the (r,t) plane, the solution can be represented as
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shown in Figure 157c. Up to r = r*, a strong shook is propagated along the line

r - c't = 0, and unloading tkes place in region I. At r = r*, the discontinuity

vanishes, and the elastic loading region,. II forms, with umloading still in region I.

- Let us consider only that portion of the (r,t) plane for r < r*, and make & series

representation of the solution in that domain.

a.

Introducing the potential 0, with u = into Equation (20) yields the general

.-solution in the unloading region

0 !-f(r-ot) +-g(r+ct)
r r

U 1 (,+ g') 1- (f + g)
r 2

6rr (22)

" r r

r -g --r +9 2(f- _- g

"r

Along the shock front r - c't = 0, impulse-momentum yields

co (2+3)

where A u and Aut are the discontinuities in strain and particle velocity. Orl

since ur and Ut are zero below r - c't = 0,Equation (23a) may be written

c'Ur + Ut = 0 (23b)

On the t-axis let ar = a (ro, t) be given as & function of the type shown in

Figure 157b. Then letting f(r° - ct) = f and g(r. - ct) = go, we have

(Yo, ; -•(f"o+ gt) - o (f•' + g'-) ( o + go) (2)

0 ro r0 ro
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On the shock front r - o't = 0 Equation (23b) yields

C,[!(f, +g') -_ 2(f, + g') +rL(f + g 2

o [ (f" g"l) (- 9~-g) 0 (25)1r r2

and, sinceu=0 I
(f' +g) - (f + g) =0 (26)2(6

r

Equation (25) becomes:

(c +c) fafr(1 i] + .)cl +

=• -- -)r l +(1 = 0 (27 ) -I

r C

Furthermore, at r , 0, u = 0 and a is discontinuous, thus
0 r

1 ~ -

f!.r o(ro) + - g(ro) - g(ro) =0 (28)
0 r 0 r

Equations (24), (27), and (28) are sufficient for the solution in region I for

r < r*.

Let a(ro, t), f and g be represented by the polynomials as follows:

2 3 __ _ n
a(r0, t) = Po + plt + p 2 t + P3 %t + Pnt

f(r° - ct) = f( f)=o +f f +•f 2 + f nn

g(r0  2 (29)g~0 + 0%) = g (k, go8 + glk• + g2 k + - n~n(9

F cl-"0f 2 2 n n
f r(l- -f(a r) f + fla r + r +- f an r

I c 1 J 0 1 2 n

g r(l +R)] =g(Pr)= go + 1 r+g r 2 +- nnrn
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Substitution in Equation (27) and equating like powers of r yields:

2 2

2

112 2 2i

n~ 2 i n 3

n -n

Equation (28) yields

i [fl+2r 3f 3 ro 2  4f4 ro 3 45fsr4 ]If•' + 2fc r + 3fr + 4+

1 c 0 3 0f 4r, +'f5 r0
5

[fo + flro + fcr 02 + fr3+ f 4+ f ro5

2 3 42

1__ gl+2g~ro+ 3gr +g + 5gsror
r 0 2 g2r° 0 gsr5

[g2 o + glro + g2to2 + g~o3+ g4to 4 r =5 0

Equation (24) yields

P =ý + -u12f2+ 6f r + 12f r 2 + 20fr + -+
0 r 2 3o0 4o0 500

4u l[f+ 2f2 ro + 3f 3ro2 + 4f 4ro3 + +
0 (32)

+ 3If0+ fIro+ f 2 ro 2 + f3ro3 +
r°

+ A + 2 2 + 6g3 r + 2Iro2 + 20g4ro3 + -J
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11ill( + 2g2 r + 6 -2or02+ 4gr o3 +

r .2

+ L3 0+ glro g2gro + +gr03+

p +•2-u) [-2cof 24crof - 6crf]

0

v(+2u) 6cg + 24crg+2r+ I

+r 0og2o4+o4

3' 1 o 2 o 54

L- +[2cg2 + 6crg3 + 12cr2og4 + ']cro (

o0 o
2[cg + 2crog2 + 3cro + (

r
0

P r (A+ 2u) [12f4c2 _ 60f C2r +
2 r0 1

4ju [3f c 2 _ l2f4c 2r 2 +]
r
0

+4[_f c 2 _3f c 2r 2 +

+122 2 _ _ __ _

r 0  ,u2) I12g4 c +60g 5 c r0 +

['L23g3 c + 12g4c r
2 +]

r0
0
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0jrr
[I

o O0

+'~.( + 2ju) (20g5o3) _%[4u ' 51+f +*0
0 ro r0

Equations(30) through (32), when solved simulteneously,vill yield approximate values

of f and g for the first five terms,which will probably suffice for at least a rough

solution.

The solution can be extended beyond r* by noting that in II ar, u = o and r-o't = o,

a is continuous across the unloading wave separating I and II, and = 0 on the
r

unloading wave.

It my be noted here, that the problem could be solved by characteristics, but since

I. the boundary conditions are set on two lines; t = 0, r - c't = 0, it would be

necessary to set up a finite grid in the (r, t) plane, which would necessitate the

solution of an increasingly larger system of simultaneous equations for each suc-

"V cessive time step.

G. RECONMENDATIONS FOR FURTHER STUDIES

The present study serves to indicate that solutions of a number of difficult

problems involving ground shocks are possible with the technique of digital simu-

lation employing the discrete models which were used in performing the numerical

solution of the preAent problems. These models were developed with consideration

for handling problem of continuum dynamics involving plastic yielding and irrever-

sible flow, as well as viscous effects. However, the computer programs currently

L -41-
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vailable are restricted to linearly elastic solids, although the incluuion of via-

Il
oosity for solving problems of Voigt solids does not, involve major difficulty. The

ii handling of nonlinear characteristics will require further research.

Further studies that can be performed with only minor or no modifications of pro-

sent computer programs are the following:

1. More extensive determination of the stresses and ground motions, including

shear stresses, circumferential stresses, principal stresses, and direc-

tions of principal planes, and tangential accelerations, velocities, and

displacements for elastic half-space solids.

2. Determination of the effects of an expanding air blast on the horizontal

surface, or the determination of the combined effects of the direct in-

duced vave and the air blast vave.

3. Effects of elastic layering. The layering must be restricted to those

discussed earlier.

4. Effects of linear viscosity.

5. Numerical solution of spherical blast problems in solids with similar

behavior.
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CHAPTER V

DIRECTLY-TRANSMITTED GROUND PHENOMENA

A. ITELASTO-PLASTIC ANALYSIS

A: INTRODUCT ION

This study vs originated in order to derive motion and stress values for directly-

Stransmitted ground shook in the near-crator region, or so-called plastic sone,

where neither hydrodynamic nor elastic theories in specifically applicable to

Ii obtain useful estimates of these values. The region of interest extends about

the crater, from the ground surface to the vertical axis below. Very close-in,

within the crater, shearing stresses are negligible in comparison with the extremely

high pressures. Somewhat farther out, in the so-called plastic zone, shearing

stresses become important. Still farther out, strains become small enough for

elastic or visco-elastic theory to be used.

Of greater importance than determining the distribution of stress and motion through-

J out the plastic none are the computations of stress and energy attenuation as a re-

sult of vave propagation through the plastic zone. This information is required

I because its availability, as inputs for the elastic models, immediately gives

greater realism to the estimate of motions and stresses in the elastic zone.

rIn doer to satisfy these requirements for energy attenuation and motion solutions,

it is, of course, essential to formulate the problem as an elato-plastic, two-

f dimensional model. The problem is a taxing technical operation involving the

solution of non-linear, two-dimensionsl, partial differential equations and re-

quiring the use of complex and advanced computational techniques.
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A first stop tovard these objectives has been made in this study. A formulation ]
of the physical model has been expressed in terms vhich pormit a tractable

computational procedure. This procedure has been tested and debugged after the

usual amount of false starts and try-outs. At this stage only a pilot problem

has been completed albeit vith a smaller number of degrees-of-freedom than the

formulation is capable of. The results demonL orate the adequacy of the compu- 1

tational approach and coding details in handling a realistic physical situation.

They also indicate a very rapid attenuation with distance of both energy and stress. I
Modification of the computational procedure has been studied and planned to the

end of handling a larger number of degreos-of-froedom and of speeding the routine,'

This is needed in order to obtain better detils in the stress and deformation "

pattern.

In addition, the simplified method used in the pilot problem prevents the com-

putation of the residual strains ehich determine the precise boundary between the

plastic and the elastic zones. Modifications of the procedure again is necessary

to goet a measure of these strains.

The study has been performed by Dr. J. A. Brooks, who has been assisted by W. L.

Frank, Director, Systems Analysis, Informatics, Inc., in the computational aspects I
of the work.
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B. STATDUJ4T OP PROBLEM

The specific objective of this study is to oapute the response to directly-tress-

mitted ground shook of an olasto-plastio, semi-infiniteo half-spaeo subjected to a

surface explosion of a multi-megaton veapon. Close to the burst, pressures in the

medium are extremely high and the shearing streoses which the medium can sustain

are insignificant compared vith the normal stresses and can be neglected. Somewhat
farther 

out, shearing 
stresses 

become important 
and 

th full 
stress tensor must 

be

considered. The material in strained veil beyond its elastic limit and elastic theory

can be used only as a first approuimation. Still farther out, elastic theory or

•: [ 
v I s co- e l a st~i c the o r y i s q u i t e a p p r o p r i a t e .

The region of interest, as shown in the folloving sketch, is bounded by an inner

hemispherical surface of radius r0 , the ground surface 0 = 7/2,and the outer
rr

0r 1

s 
i 

pressure, 
p(t)

Undisturbed
Disturb Region Regionr rl 

1 
r (to) + (t 

t 0O)v
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I

The outer radius, r, advances with tim a . velocity, To such that it seaterse

the disturbed and undisturbed regions.

Solution objective* are to define the extent of the plastic .soe to determine the

attenuation of energy through the plastic sone, and to describe stresses, strains, 1
displacements and velocities vithin the plastic ane.

1

ii

-1I06 - 1



C. • ION

The problem is non-linear and tvo dimensional and therefore requires numerical treat-

ment. The equations are given in terms of generalised coordinates rather than finite

difference approximations to field equations in order to avoid speed limitations im-

posed by space-time mesh ratio requirements necessary for convergence. The relative

speed of the two methods in not known and mesh ratio requirements were not determined.

It was felt that the finite difference approach had a higher chance of complete fail-

ure by virtue of speed and, therefore, should not be the first approach to be attempted.

i By virtue of the generalized coordinate approach, shook discontinuities are smoothedi over. Also, the degree of approximation to the exact solution for the field equae-

tions depends upon the number of generalised coordinates and the choice of basis

functions.

Basin functions X and Yn' am given by Equations (H-5) and (H-6),* are defined over the

region ro4 r k rl(t), 04 0 4 %/2 and O 0 £2n, where r, 0 and 0 are polar spherical

coordinates. The radius is r; 0 is the polar angle and 0 is the meridian angle. The

[ basis functions are independent of 0 and, consequently, the equations are restricted

to the axially symmetric case. The inner radius, r0 , is fixed (i.e., r. = a constant

I for any given problem). The outer radius, r1 (t), moves outward with a constant velo-

city, v. Displacements are expressed as linear combinations of the basis functions

I . as given by

I *Letter H, where it appears in equation numbers, denotes Appendix H.

1" -107-
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~re (2)

vhercoefficientg, qnj become the generalized coordinlates. 31

Substitution of Equations (1) and (2) into the familiar expression for kinetic

energ, T j r1i.p 3

yields: 7-= Ir7 7 ,,n i ,h4 ,, ,* (4)

there A MB M and F r iedepndet coefficients and"i h as est

of the medium. Coefficients A are given by:

By introducing the variable,(•, given by:

(6)

and by requiring that X and Y be functions of 0 and r onlyp coefficients A taken n en

on the form given by:

ff.

4. i e Y. Y.,

- 108 -

*1!

Ii



F:

The integals in Equation (7) are Independent of tim and cma be evaluated once for

each problem. Similar formulas for BM and F aMre given by Equations (H-19) and

(H-20) of the Appendix.

Displacements are partitioned into elastic and yielded components rith primes denoting

elastic components and double-primes denoting yielded components. The total dis-

placement, or =nprimed quantity, by definition of notAtion equals the am of the

primed and double-primed displacements. The umprimed, primed and double-primed

notation is also extended to generalized coordinates and strains.

Stresses are functions of elastic strains given by the usual elastic relations be-

tween streas and strain. Consequently,.the elastic strain energy of the medium is

Sa quadratic function of the elastic components of the generalized coordinates as

-- lJgiven by:

(~~ hi )

Coefficients D are functions of time given by Equations (H-27) through (H-30) of

the Appendix.

Ii The potential of the external forces is given by:

Tf (9)
0 0

-109-
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vhere P(t) and p(t) are pressures an the spherical surface, r = ro, and on the ground

surface respectively. The pressure fu•ctions, P(t) and p(+) are tmplifiod to

fnmotions of t alone by virtue of the specific problems to be worked. Hydrodynamic

computations* indicate that at certain suitable values of initial time, to, most of

the energy transmission across a suitably chosen inner radius, re, will have already I
occurred and practically no energy transmission will have, occurred across a spherical

surface of radius twice that of ro At the same time, pressures p(r , t) and I
P(Q, t) will have decreased to more than an order of magnitude loss than those mid-

way between r and 2ro. The air wave front will have traveled ahead of the radius,

rl, and the pressure distribution over the ground surface from r to r1 will be

approximately constant at any given time. The pressure over the inner surface will

have dropped to the same order of magnitude as the ground surface pressure and, by

virtue of its insignificance, can be assumed to be uniformly distributed.

By making suitable substitutions of expressions already developed, Equation (9)

becomes:

S(10)

where ~ r ~ ~ ~ d

Y, (S)1

*Brode, H. L. and Bjork, R. L., "Cratering from a Megaton Surface Burst", R•-2600,
1960, The RAND Corporation.
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Prom the familiar form of the Lagrangian equations of motion, or from the equivalent

Hmmilton's principle, the equations of motion are found to be:

p1 ZAMA + m f + D,(12)
vhere coefficients A , B, C and D are given in Appendixr H. Except in the

elastic case, in which qn = n q, n auxiliary met of yield equations must be developed

for detormination of the q/1

SSuppose ve epply Coulomb's equation, vhich is given by Equation (13), m determine

va•lues of yield strains*O r,6G , and 6ro, such that, for given relations,

the following expression in satisfied:

vhere r is the shearing stress, c is cohesion, o is the normal stress and 0 is the

angle of internal friction. Let us denote the values of m 6 6 and

which have been determined from application of Equation (13) by fl, f2, f 3 and

respectively. Then let us seek values of q//nt n = 1, 2 .... such that yield strains

computed from the q approximate the values given by fl, f2, f 3 mnd f4. By substi-

[ tution of yield displacements determined from formula such a Equations (1) and (2)

into formulas for strain we obtain:

(14)

I*The strain notation is fairly obvious. Only the expression for rG might cause
some confusion; it is

!i, - l -



Ii

Then, if ve require the following equation to be satisfied for aFbitrary variations

of stress, 6 a 0r, 6%, 600 and 8-C, 1

we obtain the folloving set of simultaneous equations for determination of 'he qUn

vhere G is found from: 4

- 12 -



(Y*

U4
(I ( o2,0.)

The D coefficients in Equation (19) are the same as the D coefficients in the

equations of motion. Hence the equations of motion become:

In the "simplified theory", for which Equations (21) are the equations of motion,

stresses depend only on the instantaneous total strains and not on the past strain

I. history. The more complete theory is contained in Appendix H. In place of Equa-

II tion (19), the more complete equation, copied from Equation (H-5T), is as follows:

I (22)

Equation (22) has been coded into the existing machine program, but temporary

inaccuracies in the E. matrix render the more complete code inoperative.

i. -113-
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I

It remsins to provide formulas for computation of fl, f2, f 3 and f 4 " In doing so

we proceed to sketch the detil contained in the Appendix quite sparsely. Combining j
the equation of Mohr' circle vith Equation (13), ve obtain:

_ _ I
2 (23)

E. : : [. e, forms (24)

e, d SL -73(25)

where S 1 , S2 and S3 are principal stresses ordered such that S3£ S 2 S 1 c cot $o .1

Equations (23) through (25) are, in reality, only more explicit forms of Coulomb's

equiLtion.

e now compute the principal strains vhich for the simplified theory are given by:

0 ( , 0~g)- I* 6 ~ Cj (26) '
: ( + 4,o). V4- F Z,..6~ ). - + (27)4

61P 4'(28)

For the more complete theory, principal strains are given by Equations (H-77)

throulh (H-79). 3
114



Next, let

3l (29)

6"69- .+ (• L, 6u (30)

where Coefficients go §71' 5f2' an 3 arS to be determinled such that Equations

(26) thbrough (28) sre satisfied. It is foumd that if

C 404 +(32)

then

(33)

If Eqution (32) is not true, then

FHaving 9 0' if 6 1. 6
3 4 12' adi

6 -s - o5-

then
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Otherwise, if -

and if

4~~ -2 6-9~' Crd 0 [5

4 *)j . ,0 S -il(38) *
then

e' (39)

and 2 = 0. The complete not of possibilities includes 8 other cases vhich "

are given in the Appendix. Having obtained e 6,3a transformation -

inverse to Equations (26), (27) and (28) gives f 1 ' f 2 ' f 3 and f 4 for use in numeri-

cal evaluation of G, m = 1, 2

The machine program vas originally coded from working reports whose contents are I
essentially the same as given in Appendix H of this report, except for differences in

notation and grouping of terms. Coding, formula evolution, and reporting never

reached exact coincidence. The code was gradually "de-bugged" and modified in

order to eliminate trouble vhich manifests itself as a violation of the principle

of conservation of energy. In addition to correction of coding errors, two modi-

fications had a proumouced effect on the camputations.
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The first modification concerned the simultaneous integration of the equations of

[I motion, given by Equation (12), and the stepwrise advancement of -the yield components

of the generalised coordinstes by use of FTuation (22). The program uses a Runge-

P Kutta integration routine vhioh requires computation of derivatives at times t,

St + h/2, t + h/2 and t + h for integration over the interval from t to t + h.

Asuociated with successive derivative computations within an integration cye19, the

f value, of At in Equation (22) were originally taken to be 0, h/2, 0, and h/2,

correspondingt o time intervals from t to t, t to t + h/2, t + h/2 to t + h/2 and

%t + h/2 to t + h. The original sequenow of At values in Equation (22) vas changed

to 0, h/2, h/2 and h, corresponding to time intervals from t to t, t to t + h/2,

t to t + h/2 and t to t + h. This change produced physically plausible results for

short test runs but energy growth trouble returned when attempts were made to inte-

grate over durations of time suitable for practical problems.

The second modification vas made when it was learned that inaccuracies in mVtrix

elements, E,, were causing the difficulty. The change consists of replacing

Equation (22) by Equation (19) and replacing Equations (H-77) through (H-79) by

Equations (26) through (28). Errors in the E mn elements are on the order of

I (At) 2 by virtue of its derivation. This leads to errors in the time-vise advance-

ment of Equation (22) which are not acceptable. This inadequacy can be corrected

in the derivation and inoprporated into the code, but lack of time prevented doing

so in this study.

Ij



D. PILOT PROBLEM

A pilot problem has been run which demonstrates the adequacy of the method and ji
correctness of the coded procedure. The problem parameters are as follow:

Number of degrees of freedom N = 4 1
1wmgts constants = 301 ksi

)u = 451 ksi I

Density p = 3.3 slup/ft 3

Cohesion c = 100 psi I
Dilatational vave velocity 7250 ft/sec I
Air pressure parameters for 2 MT burst

Inner radius r° = 250 ft,

Initial outer radius r 1 (t) = 300 ft

Beginning of computation 22 milliseconds

Initial strain energy zero

Initial kinetic energy 3.07 x 1014 ft- lbs

Initial conditions vere chosen to give a velocity distribution vhich, qualitatively, *1
had the appearance of the velocity distributions shown in RAND report number HM-2600

4
by Brode and Bjork. The magnitudes of the velocities were chosen such that the *1
initial kinetic energy was 100 KT (TNT equivalent). The initial strain energy was

token to be sero since code checks had shown a rapid re-apportionment of energy

irrespective of the initial assumptions. The initial conditions are as follow:

i11
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, (t.) = 7�3�.- f/ .-

[,, A C•'..= ,9-. 0*/s-..

•4 (4.,) = i4e' *i •Ise.I7 3

This choice gives a peak initial horibontal velocity at the ground surface of about

2.6 feet per millisecond and a peak initial vertical velocity (not at th same point)

at the ground surface of about 1.2 feet per millisecond upvard. Directly below the

burst, the peak velocity in about 3.5 feet per millisecond at the beginning of

Comu~tations.

Results obtained from the o•nquter are tabulated at regularly-spaced intervals in

time, angle 0, and coordinate* they are then plotted against radius for fixed

I values of time and angle 0. From these plots, quantities can be re-plottedas

functions of time or angle 0.

Figure 158 shown radial stress versus time for various radii along a line which

makes an angle of 72 degrees with the vertical axis. Figure 159 shows radial

Sstress versus time for points along the vertical axis. Inversion of stress mag-

nitudes from what one vould expect is due to too large a value of q 2(to) in the

initial conditions. The initial velocity distribution for the pilot run simply does

not match the intended initial distribution and, as a result, the region below the
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orator is rapidly put into tension. The limiting value of tension, which in a cot 0,
shohm up as nero on the scale of Figures 158 and 159. Of course, more appropriate

initial conditions can be used.

I
Results shorwn in Figure 158 and 159 veore so disturbing that hand computations vere

performed to spot check the machine computation of yield strains. An error wa n

found but it could not possibly have influenced the results appreciably. The error

had the effect of limiting the tensile stresses to approximately 600 psi instead of I
172 psi, as had been intended. Figure 160, which shows time histories of tangential -

stress for 0 = 72 degrees, is given for comparison with Figure 158. Although the

time scales used in Figures 158 and 160 are different, it can be seen that the

general curve shapes for both radial and tangential stresses are quite similar.

As shown by these figures, tangential stresses apparently begin to attenuate more I
rapidly than radial stresses beyond a distance of 1,000 feet. No explanation of i
this phenomenon has been found as yet.

Radial displacements along the vertial axis (B = 0 degrees) are shown in Figure 161;

radial displacements for 0 = 72 degrees are shown in Figure 162. These results are

not a good representation of the true physical behavior. This occurrence in the

computed results can be explained on the basis of a deficiency in the choice of
4

basis functions. Of the basis functions currently contained in the computer pro- " I
gran, none has a radial strain component different from zero at r = ro0  This

deficiency can be corrected relatively easily and such a correction is an obvious

necessity before further computations are made.
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Figure 163 show tangential displacements along = 72 dopees for various radii.

fThe curves extend to 225 milliseconds. Computations vere performed out to 490

milliseconds and the tangential displacements peak at approximtely 280 milliseconds.

The fact that tangential displacements are large is just another result of the

jinitial velocity pattern which vas chosen. Another factor contributing to the large

displacements shown in Figures 161, 162 and 163 is the inability of the "simplified

[ the'ory" to leave behind residual displacements.

The oomputer results are heartening in that they indicate the readiness of a usable

Omaputer code and in thea they indicate a high attenuation of stress. However, anmy

conclusion to be drawn from them must, of course, take into account the preliminary

I. nature of the results. These results are intended only as an indication of the poo-

sibilities of approaching an extremely difficult and complex problem in a greatly

- simplified manner. That certain physical conditions have been violated is not at

all surprising. Correcting such discrepancies is pert of the usual effort in

evolving such techniques.

2

I
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E. CONCLMUIQJS AND RECOENUTIONS

The following coments si nise the Brooks study of the propagation in soil of an I
axially symmetric wave generated by a nuclear detonation at the ground surface.

The general objective of this analysis is to provide motion and stress values for

the directly-transmitted ground shock in the near crater region where plastic dil- ,

turbances are likely to occur. These comnents define the extent of the results

obtained thus far and outline the work necessary to carry further the already- I
developed analytical techniques to the level and range of conditions required for 1
confident engineering design.I I
The model is that of an elasto-plastic medium bounded by the ground surface plane

and two concentric spherical surfaces of radii, r 0 and r 1 , The inner surface des-

cribes approximately the boundary between the hydrodynamic and the plastic regimes.

The outer surface describes the boundary beyond which the medium is undisturbed at

any given time. The model is specifically developed to treat the plastic two-

dimensional behavior of the ground at the crater periphery. The hydrodynamic

inputs are derived from the Brode-Bjork data which were graphically reduced to a

more suitable and simple form. For the conditions canputed by Brode and Bjork, the

radius of the interior sphere is approximately 70 meters or less.

The model is designed to provide displacements, stresses, strains, and, in particular,

partitioning of strains into elastic and plastic components. These values are ob-

tainable for any selected net point in time and space for any ground medium des--

cribed parametrically by the angle of friction $, cohesion c, and Lamu constants

and p•. The net points are defined at regular time intervals At at regular I
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spatial intervals in spherical coordinates 0 and r, vhore a is the angle bet1een

the vertical axis end radius r going through the burst point.

i i A computing code is available. The basic formulation uses a generalised coordinate

approach rather than a finite difference approach. It incorporates certain simpli-

fioations. For instance, shook discontinuities in the region betveen the hemis-

ji pherical boundaries havw been ignored and smoothed over by means of a series ox-

pension whioh is the me, over the vhole region. This simplification does not in-

validate the two-dimensional aspect of the model.

In a similar fashion, the air blast pressure over the ground surface at any given

time is assumed not to extend beyond the radius of the outer boundary. This simpli-

fied assumption does not allow the simultaneous treatment of air-induced and

directly-transmitted ground shock but the soil confinement from the air load is

properly simulated. The code was developed for the IBM 1604 computer. It can

compute the components of stress, elastic and plastic strain, and displacements

at not points within the region. At present, the code also incorporates a simplified

yield condition in which the stresses depend solely on total strains and Coulomb's

I equation. Only one pilot problem has been solved using relatively simple soil

parameters and weapon inputs. Resulting soil stresses and motions have been com-

putod for only a few space points and time intervals. Because the small number of

generalised coordinates used in this pilot problem restricts the detail of the

solution, the results do not provide final design data. They do, however, demon-

- Istrate the adequacy of the computational approach.
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The analysis and coqmtmr program develo•ed in this study are nov ready for solu-

tion of physically significant surface burst problem. At present, the numerical j
procedure employs stress cemputation routines which do not depend on the past

strain history but only on current strains. Thus the present code does not in- I
elude the ability to handle residual strains and displacements, but there is no.

indication that this feature cannot be added.

Preliminary results from the pilot problem used to check the programming indicates

that directly transmitted ground shock from a 2 MlT burst will be insignificant in

a structural design sense beyond a radius of about 2,000 feet.

iI

Further effort toward making the Brooks solution more useful in the definition of

underground effects logically divides itself into two sequential phases, the first

being concerned with improving the code and the second consisting of parametric

solutions. "

Improvement of the code has two concurrent objectives. The first is to improve the

available code by incorporating a more sophisticated yield condition in which

stresses depend upon the past strain history. The second is to enhance the speed

of computing operations and thus substantially diminish the burden and cost of thb

parametric studies of soil response in the plastic region.

.1

The present difference equation form of the yield equations has been found less

accurate than the companion differential equation form of the equations of motion.

This difference equation can be replaced by a hybrid differential difference for-

mulation which will correct the difficulties inherent in a generalized coordinate
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approach. The generalized coordinate system vs adopted early in the analysis of

the model in order to provide the sImplification necessary for solution.

The lack of speed in -he computational procedure has been found to be due primarily

to recomputation of quantities vhich could be stared in the computer memory. There-

fore, the code should be modified in order to optimize data transfer and use of

tape units.

Parametric studies are needed both to indicate the sensitivity of computed results

to changes in soil parameters and to provide free-field design inputs for the

analysis of structures in the plastic zone. As a basic program to be followed it

4 is suggested that three typical earth materials be chosen for study: a hard rock,

a soft clay or other plastic soil, and a soil of characteristics between those of

rock and soft clay.

Each of these media can be described by a set of parametric values, (i.e., X , I

0, and c). Computed results of stresses, strains, displacements and velocities

should be obtained for each set of parametric values rather then for independent

variation of soil perameters. The bomb inputs to such analyses are those found

in the Brode-Bjork computations of 1M-2600 (and subsequent amended and unpublished

data using a finer mesh)as well as any later computations by APSYC. These data

provide both initial energy and pressure-versus-time functions, each of vhioh is

sufficient for total excitation of the plastic regions. The response of one of

1 i the three media to each of these functions should be computed and compared in

order to acertain their compstibility vith the general mode, as vell as with the

|M
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sot of parametric values describing the media.

Thus a first extension of the Brooks study involves a minimum of four sets of com-

puUtions. It must be understood that the use in the computations of the RAND data•

automatically involves certain uncertainties and limitations. The influence of the

plastic zone behavior on the pressures in the hydrodynamic zone is ignored. This

influence, however, has been shown by Newmrk to be small and the results of a

parametric study will enhance considerably our quantitative understanding of the

physical phenomena. Such a study should be primarily aimed toward distinguishing I
between the environment created by the wave propagation at the surface on one bond

and at depths below the crater on the other. The Brooks model, in fact, is not

designed to measure small localized variations at minute depth differences;

consequently, the ray, (along which information is reported as a function of dis-

tance and time) should be limited to a small number. The number of rays and points

on each ray will be determined by the requirement for graphical presentation of

the results.
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CHAPTER VI

COMBINED EFFECTS

By combined effects is meant primarily the combination of air-induced and directly-

j[transmitted ground effects. Another combined effect, that of the Rayleigh wave,

is a result of complex interactions of the dilatational and shear waves and is

all air-induced. It has been discussed in Chapter II (Vol. I). Before discussing

f means of combining air-induced and directly-transmitted effects, it is helpful to

summarize briefly the state of the art of determining directly-transmitted effects.

A. STATE OF THE ART -- DIECREM -TRAN34ITTED EFFECTS

I- 1. Hydrodynamic Analysis

The hydrodynamic cratering analysis of Brode and Bjork has been used as input to

both of the analyses of directly-transmitted ground effects; therefore, any un-

certainties or approximations in the hydrodynamic analysis will affect the results

farther out. Several approximations were made as well as certain assumptions.

I - One of the approximations is the equation of state of the only material considered,

Nevada tuff; the approximation is satisfactory for this material but not neces-

sarily for other ground materials. However, one of the results of Newmark's

S( analysis is an indication that the computations are not sensitive to variations

in the equation of state, F'urther effort is required to establish this important

conclusion.

I i.. Details of the weapon decomposition and other early-time phenomena have been based

on assumptions which are based on highly-classified weapon detail information;

hence, calling the detonation a 2 MT burst is open to question. Knowledge of the

-133-



basis of these assumptions is of little value since the attacker's wapons Vill I
remain an unknown quantity. Thus, a major input will alays be uncertain, a fact j
which simply must be accepted. Location of the explosion is also limited at pres-

ent to the ground surface since the RAND computations were made only for a surface

burst. Depth effects should be considered in any further computations undertaken.

The Sulerian approach to the hydrodynmaic problem carries with it certain diffi-

culties and has resulted in some smasxlng of the shock front. This is not a 1
critical difficulty nor does it bring about possible large errors.

In siummay it can be stated that the hydrodynamic analysis of Brode and Bjork is

highly satisfactory as a means of determining energy partitioning between air and |

ground-shock. Computations band on this analysis have proven to be adequate

as inputs to eumlyses of the plastic and elastic regions beyond the crater. The

chief shortcoming of the computations lies In the limited extent of the results.

More materials need to be studied as moll as detonations at various depths. Until

such results are obtained it is necessary to limit the conclusions which can be

drawn from the plastic and elastic analyses of Brooks and Newmark.

2. Elastic Analysis (Sev-ew k)*

Newmark's analysis takes as inputs the hydrodynamic results at a radius of about 650

feet. These are applied directly to an elastic half-space without any consideration

of plastic-zone effects, including attenuation of peak stress and change of pulse

shape. Neglect of the plastic zone was dictated by available means of obtaining approx-

imations of response. The basic model used by Nevwrk is a mass-sprung approximation

"*See Chapter ii Vol. II I
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incorporating radial and tangential degrees of freedom. To this model were

applied pressure-time inputs based on the hydrodynamic results. An important

result of one part of the Newark study is that the variation of material prop-

erties from one side of the hydrodynamic boundary to the other (i.e., from

hydrodynamic to elastic in Newamrk's analysis) does not cause serious reflec-

tions or other difficulties in matching hydrodynamic outputs to elastic inputs.

Because Brode's results were for tuff, Nevmark's results were limited to a

similar material.

Results of these computations are extremely interesting but, as is to be ex-

pected with first results of complicated analyses, raise several questions that

must be answered before practical use can be made of the results. First, the

results show large tensile tangential stresses far beyond the ability of ground

materials to reAist. Furthermore, results are obtained only for fairly large

J depths at moderate distances from the burst because the ray nearest the surface

emanates from the burst at a 15 degree angle from the horizontal. Also signifi-

cant for shallow-depth effects is the neglecting of air blast loading on the

surface.

In addition to closing the gaps in the results as listed above, results from the

Nevmrk analysis should be extended to layered media and viscoelastic media.

mhe analysis is capable of handling these more complex problems with only mod-

erate changes and additions.
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I
3. Llasto-Plastic hglsis (Brooks)* i
The Brooks plastic-region analysis was undertaken precisely to close the gap

between the hydrodynamic and elastic regions. Newmark's results extend the

elastic region to over 100,000 psi, which is far above the elastic stress- 3
carrying ability of earth materials. The main results which were sought from

the plastic analysis are the limits of the plastic zone and the amount of at-

tenuation of energy and stress within this zone.

This analysis employs generalized coordinates and numerical approximations and -)

includes a means of detecting the cessation of inelastic behavior. Further, it

eliminates one of the problems encountered in Newark's results, that of high

tensile stresses, by limiting tensile stresses to a level which a ground material

can withstand; Coulomb's equation is the basis of the assumed behavior of the I
ground. Only one pilot problem has been run and the computed results are ex-

tremely interesting although inadequate for use as design inputs. Certain nec-

essary assumptions were found to be unrealistically chosen; this caused some

inconsistencies. Such occurrences are, of course, the rule for first results

from highly complex analyses, and do not affect the validity of the procedure.

The preliminary results, which include the effect of air-blast loading on the

surface, show large attenuation of stress and energy in the plastic zone. No

results were obtained near the surface, however, because the shallowest ray

which was used ms at an angle of 18 degrees from the horizontal. The solution

is capable of considering shallower rays (even surface rays) and such rays should

be included in any extensions of the computationa. The most important short-

coming of the computer program, from which these results have been obtained, is

*See Chapter 5, Vol. 1I
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its low speed. Another lack in that of a more sophisiticated yield condition

than that used thus far. After these problems are corrected, parametric studies

should be undertaken to show how sensitive results are to ground material prop-

erties. When this has been established, typical earth materials properties

should be used in computations which would be suitable for design inputs for

structures which might be located in the plastic medium.

In addition, based on Newurk's conclusion that interface discrepancies do not

seriously affect the phenomena transmitted across the interface, it will be pos-

sible to combine the hydrodynamic, plastic, and elastic analyses in one solution,

and, further, to include air-induced effects. This combination will constitute

the ±irst complete and unified description of ground effects in the close-in

region and beyond Proposed means of accomplishing this are outlined in the

following section.

B. PROPOSED MEMODS FOR C(SIBIIG EFEICTS.

"The Brooks analysis has been shown to be capable of handling the ground stresses

and motions associated with the zone of hydrodynamic behavior. The precise boun-

dary at which behavior changes from hydrodynamic to plastic is unknown and,

indeed, probably does not exist as a definable interface. Therefore, a suitable

radius cEa be chosen, as wan done for the Brooks pilot problem, and inputs to the

plastic analysis obtained from the hydrodynamic stresses and motions. In the

hydrodynamic region air blast effects are trivial, although the hydrodynamic

analysis does include such effects.
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I
The plastic analysis, including air bl&nt effects (which incrmaLc in inmor-

tance with increasing distance from the burst) givez results which can be I
used to extend the description of the phenomnla into the clastic regime.

This can be accomplished in three possible ways.

The first method is to continue the elasto-plastic analysis according to Ii
the Brooks equation into the elastic zone. This would not result in the most I
detailed estimates of stresses and strains because the procedure is hindered

by the non-linear features of the plastic analysis which are not required for

the elastic sOlution.

The second method is to use the Newmark analysis in which the stress Inputs

into the elastic zone are obtained from the Brooks plastic analysis. Thiat

procedure presents no intractable difficulty and appears rather attrac:tive.

The Newmark analysis must, of course, be extended to points nearer the our-

face at distances of interest and air blast effects must be added to the des-

cription.

The last method iJ.. to u-.e a half-upace solution similar to that of Freeman

Gilbert fcr the Rayleigh wave problem. The procedure would consist of

applying to the surface of the elastic solid a point source input which is

deriveo from the energy attenuation factor computed in the plastic analysis.

This procedure is feasible because no energy attenuation takes place in an

elastic body. The characteristics of the surface input can be varied until

a match is obtained between the stresses and motion (at the radius corres-

ponding to the plastic zone limit) in the elastic half-space and those obtained
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from the combined hydrodynmaic and plastic analyses. It vill be necefsary

to choose the source such that air blast effects are the sa&= as those from &

surface burst or, alternatively, to use superposition to combine a solution

for an air burst (such as the Gilbert Payleigh •ave pulse) with the surface

source. Since the solutions are lineargno difficulties arise. This last ap-

proach has certain advantages in dealing vith locations near the surface but
I [is not as versatile as Newmark's numerical technique.

3
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